

NW IA Dealer Agronomy Update

Diseases Found in the Countryside this week

Disease Lesion Mimic in Corn: Don't Confuse It for Disease

Disease Lesion Mimic (DLM) creates spots, stripes, or lesions in corn that look like com foliar diseases — but unlike fungal or bacterial infections, DLM is not caused by a pathogen and cannot be controlled with fungicides.

Why It Happens

DLM is linked to genetic mutations that trigger cell death even without a pathogen present. These genes mimic a plant's natural disease-defense response. Environmental stresses especially **heat**, **sunlight**, **and excess moisture** — may trigger symptoms.

DLM can look just like disease, but it's a genetic and stress-related condition. Correct identification saves money, avoids unnecessary treatments, and helps guide future hybrid and field management choices.

Physoderma brown spot (PBS) and Physoderma stalk rot (PSR) are fungal diseases caused by the Physoderma maydis pathogen. Infection commonly occurs in the plant whorl where water tends to accumulate from rain. Since the pathogen requires a combination of sunlight, water, and warm temperatures (73 to 86°F) to germinate, infection in the whorl may cause lesions in bands across the leaf. Dark purplish to black lesions can also appear on the leaf midrib, stalk, leaf sheath, and husks.

Lesions on the leaf midrib often coalesce to form larger dark blotches. Symptoms

typically appear prior to tasseling. Foliar leaf symptoms appear similar to eyespot and southern rust

Anthracnose Top Dieback: Caused by the same anthracnose fungus (Colletotrichum graminicola) that causes stalk rot, Anthracnose Top Dieback results in premature plant death starting with the flag leaf. Infection happens early in the season, but symptoms are triggered by late season stress. Fungicide can indirectly benefit top dieback in that it can help reduce or delay the stress that lets the disease get kickstarted. Fields showing signs of this disease should be monitored closely for lower stalk rot and lodging risk.

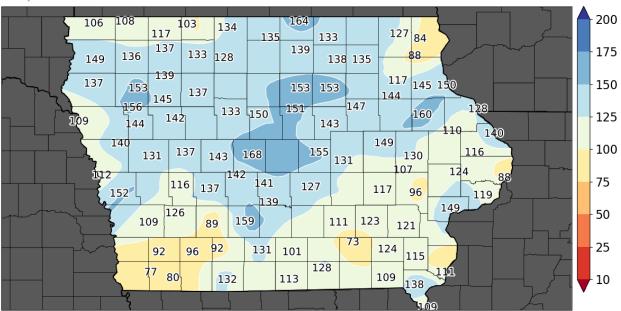
Identification of anthracnose top dieback includes

- Yellowing, purple, or dead flag leaves randomly scattered within a field
- Stalk will eventually show the characteristic black, pin prick anthracnose lesions. Splitting the upper part of the stalk will show a discolored or rotted pith

Rainfall and Weather Update

It continues to be an active summer when it comes to weather. Here are some weather updates that are pulled today but do not include the rainfall happening this morning. You can see there are a few parts of the state showing below average (1951-Present) rainfall totals, but a vast majority of the state is above average. Rainfall will continue to aid in the development of multiple diseases including foliar diseases, stalk rots and root rots.





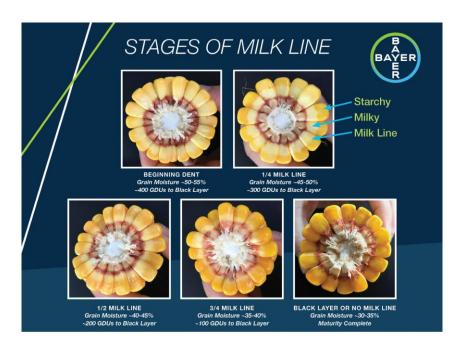
11 Apr 2025 thru 18 Aug 2025 Precipitation Total [inch]

Generated at 18 Aug 2025 5:31 AM CDT in 7.72s

11 Apr 2025 thru 18 Aug 2025 Precipitation Percent of Average [%]

Generated at 18 Aug 2025 5:09 AM CDT in 7.75s

data units :: % IEM Autoplot App #97



Timing Corn Silage Harvest – Milk Line & Burndown Method

Successful silage harvest starts well before the chopper enters the field. Growers who plan ahead—by scouting maturity, scheduling custom choppers, lining up packing crews, and preparing storage—are the ones who consistently put up high-quality feed. One of the biggest factors in silage quality is harvest timing. Getting it right ensures optimal starch content, proper moisture for packing, and excellent fermentation. Getting it wrong can mean lost yield, poor digestibility, and feed that doesn't perform in the ration.

1. Understanding Milk Line Progression

The "milk line" is the visual boundary between the solid, starchy portion of the kernel and the soft, milky endosperm. It appears as a line that moves from the top (crown) of the kernel toward the base (tip) as the corn matures.

- No milk line / blister stage Too early, moisture is too high, and starch accumulation is incomplete.
- 1/4 milk line Whole-plant moisture generally 70–75%. Still early for most silage, but getting close for high-moisture corn.
- 1/2 milk line Ideal target for many silage fields; whole-plant moisture often 65–70%.
- 3/4 milk line Moisture levels drop quickly into the low 60s or high 50s, increasing risk of poor packing and fermentation.

Rule of Thumb: The ideal milk line stage for silage is often 1/2 to 2/3 of the way down the kernel, depending

on hybrid and growing conditions.

2. The Burndown Method for Whole-Plant Moisture

Because milk line is a useful indicator but not perfect, it's best to confirm harvest timing using the burndown method:

Steps:

- 1. Collect **5–10 plants** from a representative part of the field (avoid end rows or unusually wet/dry spots).
- 2. Chop the plants into small pieces (1" or less) with a chopper, cleaver, or heavy-duty knife.
- 3. Mix the sample thoroughly to represent all plant parts (grain, cob, leaves, stalk).
- 4. Weigh out **100 grams** of the chopped sample.
- 5. Spread the sample evenly on a paper plate and **microwave** at 50% power for 3–4 minutes at a time.
- 6. Stir between cycles and continue drying until sample weight stops changing.
- 7. Calculate moisture:

Wet weight – Dry Weight

Moisture% = Wet weight x 100

8. Target whole-plant moisture for bunkers/piles is generally **65–70%**, and for upright silos **60-65%**.

3. Putting It All Together

- Start monitoring fields 7–10 days before expected harvest using both milk line observation and moisture testing.
- Check different areas of the field, as maturity can vary by soil type and hybrid.
- Remember that warm, dry conditions can move maturity faster than average, while cool, wet conditions slow progression

Final Thought:

By pairing milk line progression with the burndown method, you take the guesswork out of silage timing. The result is silage with optimal starch, moisture, and feed value – setting up your herd for better performance and your feed storage for better fermentation.

Growing Degree Units

GDU accumulation continues to be running ahead for all the planting dates listed below. The table below shows the GDU accumulation from **April 11**th – **August 17**th, **April 23**rd – **August 17**th and **May 5**th – **August 17**th at different locations in Northwest and Central lowa. These GDUs can be found on the following website –

plug in your location and planting dates for GDUs specific to you. MRCC.

	4/11/25 to	30 Year
Location	8/17/25	Average
Rock Rapids	2195	2044
Bancroft	2111	1969
Le Mars	2286	2118
Fort Dodge	2189	2082
Denison	2292	2119
Ames	2399	2114

	4/23/25 to	30 Year
Location	8/17/25	Average
Rock Rapids	2099	1980
Bancroft	2026	1908
Le Mars	2183	2045
Fort Dodge	2099	2012
Denison	2194	2048
Ames	2312	2040

	5/5/25	
	to	30 Year
Location	8/17/25	Average
Rock Rapids	1996	1896
Bancroft	1939	1829
Le Mars	2083	1954
Fort Dodge	2003	1928
Denison	2091	1963
Ames	2196	1952

Additional Resources:

Track + submit progression of key diseases like Tar Spot and Southern Rust https://corn.ipmpipe.org/

Get alerts for insect migration and emergence with https://www.insectforecast.com/

Track GDUs https://mrcc.purdue.edu/tools/corngdd

Sign up to receive Bayer Crop Science Agronomic Updates

/// FieldView Support:

/// 888-924-7475 /// Knowledge Center /// YouTube /// Twitter

See the disease risk maps that are provided by a 3rd party exclusively for Bayer Crop Science.

Corn Disease Risk Maps
Soybean Disease Risk Maps

Picture of the Week

Picture of an arrested ear caused by a V11 Liberty post application