

NW IA Dealer Agronomy Update

Grand Nutrient Uptake Phase

With much of the corn at V5 or greater, it's reaching a pivotal point in its development—and nutrient uptake. At this phase, the foundation for yield potential is being established, and nutrient availability becomes increasingly critical to support the plant's rapid vegetative growth. Following the V7 growth stage in corn, nutrient uptake—particularly nitrogen (N) and potassium (K)—intensifies as the plant enters a phase of rapid vegetative growth and reproductive preparation. For a 300-bushel corn crop, the demand for nutrients is substantial. Between V7 and VT (tasseling), the crop can absorb approximately 60# N. Potassium uptake also surges during this

time, with more than 50–60% of total uptake occurring between V7 and R1 (silking). A 300-bushel crop may require around 188–225 pounds of potassium per acre after V7, with daily peak uptake rates of 5 to 6 pounds per acre. These high nutrient demands underscore the importance of precise and timely fertilization strategies. Split nitrogen applications, early-season potassium availability, and ongoing monitoring through soil and tissue testing are essential for maintaining optimal growth and maximizing yield potential.

Corn Growth Stages – What's Going on Currently

V9-V11

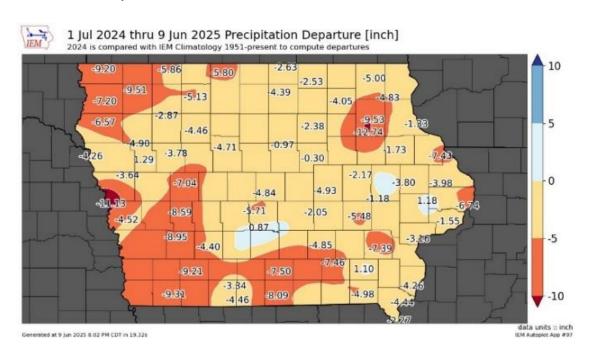
Around 6 to 8 weeks after VE, corn begins steady and rapid period of growth and dry matter accumulation. At V9, tassel is developing rapidly, but is not yet visible. New leaves appear every 2 to 3 days and ear shoots are developing

V12-Vnth

By V12, the plant is about 4 feet tall or more. Nutrients and water are in high demand to meet growth needs. All leaves are full size and roughly half are exposed to sunlight. Brace roots are developing and the potential number of kernels per ear and size of the ear are still being determined. Insect and hail injury can reduce the number of kernels that develop. The plant is about two weeks away from silking at V15. The tassel is near full size, but not visible. Moisture and nutrient deficiencies at this time can reduce the number of potential kernels per row resulting in shorter ears and lower yield potential.

VT

Beginning around 9 to 10 weeks after emergence, corn enters a critical period where successful pollination is required to convert potential kernels into viable, developing kernels. The plant has reached full size. Tassels are fully visible, and silks will emerge in 2 to 3 days. Pollen shed begins and continues for 1 to 2 weeks. Hail can be very damaging at this stage.


HPPD Carryover in Soybeans

We have been receiving a lot of calls about HPPD carryover in soybeans. We all thought with the amount of rain we received last year we would not have this potential. But as we work North, we had a lot of late planted corn and a lot of late applications of Group 27 (HPPD) herbicides. See the running rainfall reports from July 1, 2024, until today for NW lowa. We are anywhere from 6-10 inches behind normal precipitation. With late applications, higher use rates, and early planted soybeans we are now seeing symptomology show up in our fields in NW lowa

Herbicide rotational restrictions back to soybeans for common corn herbicides:

Laudis – 8 months Impact – 9 months Callisto - 10 months

Soybean Flowering

Soybeans are photoperiod-sensitive, meaning their flowering, is regulated by day length. As short-day plants, they start flowering when nights become longer, a critical transition often associated with the summer solstice (around June 21st). However, early planting can prompt flowering before the solstice if soybeans have experienced the necessary decreasing daylight hours. As soybeans approach the R1 flowering stage, it's essential to consider white mold management. The disease cycle of white mold is complex, requiring specific environmental conditions and soybean growth stages to align infection. The fungus survives in the soil as sclerotia, which can persist for many years. Under wet conditions, sclerotia in the top two inches of soil germinate, forming small mushroom-like structures called apothecia. These apothecia release airborne ascospores, infecting soybean flowers. The fungus then grows into the stem, and if cool and wet conditions continue, the disease can spread throughout the plant. To manage white mold, consider preventive fungicide applications, like Delaro® Complete Fungicide, recommended at the R1 (flowering) stage. This timing is crucial because the disease inoculum infects plants through dying blossoms, so fungicides help reduce these initial infections.

Corn Rootworm Float

Corn rootworm hatch has surpassed the peak hatch GDU requirements (684-767 from Jan 1 with base 52) so it is time to start thinking about doing some float tests. A float test for corn rootworm larvae is a diagnostic method used to detect the presence of larvae in the root system of corn plants. This involves submerging the roots in water to dislodge any larvae that may be present, allowing for easier identification and assessment of infestation levels as they float to the top of the water. A benefit of a float test over just sifting through the soil is that the result is clean roots that can be additionally assessed for any feeding damage.

To complete a float test you will need

- A large bucket or other container full of water
- ➤ A spade or other large shovel
- Corn field with suspected CRW pressure
- Optional A sieve, mesh screen, or tweezers

The process is

- 1) Select corn plants that you suspect may be infested with corn rootworm larvae. Dig a large square around the plant/root mass. I shoot for a minimum of 8-inch square. Carefully remove the corn plants from the soil, ensuring you keep the roots intact.
- 2) Place the corn roots + soil ball into the container of water. Ensure that the roots are fully submerged.
- 3) Allow the roots to soak in the water for about 5-10 minutes. This will help dislodge and break apart the soil around the roots, freeing rootworm larvae to float. You may need to gently shake, stir or massage the roots to thoroughly free the soil.
- 4) Carefully examine the floating debris for the presence of corn rootworm larvae. You may use tweezers or a small scoop to pick out any larvae you find. CRW larvae will be white to off-white and wiggling!

Fields with a history of corn rootworm problems are a good place to start, as these areas are more likely to experience recurring infestations. Fields located near known infested areas can also be targeted because they are at risk due to the movement of rootworm adults. Conducting float tests on fields showing signs of stress, such as stunted growth or yellowing leaves, can also help diagnose potential unknown infestations.

FREE Corn Rootworm Pressure Starter Kit.

- sticky traps
- how-to guides
- tailored recommendations to help you

Disease Risk Maps

With a turn in the weather to more rain, humidity and heat, the disease risk in corn and soybeans is starting to ramp up. With the positive identification on Tar Spot in NE Kansas last week, we know it's time to be scouting for foliar diseases. Most areas are setting up well for excellent yield potential this year and protecting that yield will be very key to a successful year. Keep on top of diseases with access to disease risk maps. Bayer Crop Science contracts with a third-party company to develop these maps.

- Corn Disease Risk Maps
- Soybean Disease Risk Maps

New Product Spotlight DKC111-61/62RIB VT4P/Trecepta

Two new products that will be available in lower volumes for 2026

- Excellent yield performance with an attractive field appearance
- Excellent roots and very good stalk strength
- Plant at medium to high populations
- Delaro Complete will improve plant health
- Very good drought stress tolerance
- Goss' Wilt is a (5) but can still be used in Western Iowa

Growing Degree Units

GDU accumulation is now running slightly behind for all the planting dates listed below. The table below shows the GDU accumulation from April 11th – June 14th, April 23rd – June 14th and May 5th – June 14th at different locations in Northwest and Central Iowa. These GDUs can be found on the following website - plug in your location and planting dates for GDUs specific to you. MRCC.

	5/5/25	
	to	30 Year
Location	6/14/25	Average
Rock Rapids	507	541
Bancroft	481	524
Le Mars	515	569
Fort Dodge	491	555
Denison	520	565
Ames	543	568

	4/23/25	
	to	30 Year
Location	6/1425	Average
Rock Rapids	592	626
Bancroft	559	602
Le Mars	605	660
Fort Dodge	576	639
Denison	612	650
Ames	644	656

	4/11/25 to	30 Year
Location	6/14/25	Average
Rock Rapids	686	690
Bancroft	642	663
Le Mars	707	733
Fort Dodge	662	709
Denison	713	722
Ames	726	729

Additional Resources:

The last DAACAT call was held on Wednesday, June 11th Link to the recording https://youtu.be/bbVG2Hla7Fs

Drought monitor update https://droughtmonitor.unl.edu/

Sign up to receive Bayer Crop Science Agronomic Updates

/// FieldView Support:

/// 888-924-7475 /// Knowledge Center /// YouTube /// Twitter

Monitor Soil GDUs for Corn Rootworm Hatch

https://mesonet.agron.iastate.edu/GIS/apps/agclimate/gsplot.phtml?var=gdd52&year=2025&smonth=1 &sday=1&imgsz=640x480&emonth=5&eday=15

Picture of the Week

Flower showing up on 6/11 on AG20XF4. Field was planted on 4/17. Picture taken by our friend Craig Lamoureux.

Follow Jim McDermott @jfmcde on Twitter